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Extracting Knowledge from LLMs

Memory Query Answer

(DANTE, born-in, X)
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“Dante was born in [MASK].”
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e.g. ELMo/BERT
Language Models as Knowledge Bases?
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How Accurate is this Knowledge?

Switzerland V

England x
False x

Which country is the location of Sion?

Which country is Sion situated in ?
Sion is located in Switzerland. True or False?

Switzerland V
England x

Which country is the location of Sion?

England. Which country is the location of Sion?

(b) In-context interference effect

mmmm)  Accuracy Instability



Accuracy of Top-1 is not Sufficient

Input Output Prob.

Switzerland 0.4893

Which country is : I : Germany 0.0516
the location of Sion? LLthA’ Canada 0.0313

@ Switzerland 0.2267
) :Nhic_h COUth_fV i: gﬁ | Netherlands 0.1071
the location of Sion? LLM B France 0.0834
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Same Accuracy # Same Uncertainty



Probing LLMs for Accuracy Instability

e We extract facts from the T-REx dataset (Elsahar et al. 2018).
o It contains relation triples e.g. <Rome, ltaly, located-in>
e We use 7 paraphrases for each of the prompt frames

Word Prediction (WP) Rome is located in
Question Answering (QA) Which country is Rome located in? ____
Fact Checking positive (FC-pos) Statement: Rome is located in Italy. The statement is

True or False?

Fact Checking negative (FC-neg) Statement: Rome is located in France. The statement
is True or False?

Positive interference Italy. Which country is the location of Rome?

Negative interference France. Which country is the location of Rome?



Prompt Framing in LLMs

B WP B QA FC-pos [ FC-neg
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All models show quite a
variation across the prompt
types.

Larger models perhaps more
stable (but hard to read)
BLOOMZ-1b1l consistently
predicts negative for fact-
checking!



In-Context Interference in LLMs

B None [l Positive Negative
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Comparison of WC with no, positive or
negative interference

Generally large differences between
conditions

Positive interference (aka giving the
model the answer) can be neutral or
even harmful!



Towards a Reliability Measure ...

Input

Which country is Sion situated
in?

Switzerland. Which country is
the location of Sion?

Output

Switzerland
Germany
Canada

Switzerland
Australia
Germany

Prob.

0.5245
0.1134
0.0313

------

0.911 7Q—"

0.0327
0.0213

O

Score computed
from probability
differences to
primary anchor
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Assessing Reliability with MONITOR

(MOdel kNowledge reliabiliTy scORe)

Paraphrased Prompts In-Context Interference

In which country is Sion located?

Wh ins Sion? Switzerland. In which country is Sion located?
at country contains Sion?

France. In which country is Sion located?

Probability
Differences

PFD (Prompt Framing Degree) IRD (Interference Relevance Degree)

A Y '4

M = Z(f(PFD, IRD))



Formulae

Prompt-framing Degree P(ol|s, 1, 1) is the probability of

Tl ] ate the model generating the object
5 Rt Yy, :
PFD = R Z L. Z IP(0clSc, I. " )i = P(oclsc, il o with the conditions of subject s,
=R prompt framing expression r, and
Interference-relevance Degree the in-context information i.
1 M Le
_ Yy, —
IRD = E Z L_ Z IP(oclsc. 1, (7)1 = P(oclsc. T, Im}fl iT: positive information
m=1"¢ =1 i~: negative information

R: count of prompt expressions

S 7 3 L.: number of subwords in object
Zf \/GlPFD + a2IRD” + a3PFD » IRD M: count of negative interference

Ef Ll :—il P(oc|sc. 1, i)y S: count of subject and object

MONITOR =



Probing MONITOR

From ~16k knowledge triples from T-REXx (20 relations)
Use GPT-4 to create 7 diverse paraphrases of the QA prompt
Create 5 “distractors” for in-context interference
This results in ~210k prompts
o https://github.com/weixuan-wang123/MONITOR



https://github.com/weixuan-wang123/MONITOR

MONITOR correlates with accuracy

LLMs MONITOR J, acc P max min 1

BLOOMZ-560m 0.701 27.8 40.4 15.1 ° We show accuracy and MONITOR
BLOOMZ-1b1 0.692 301 434 16.7 averaged across 20 T-REx data sets
Galactica-1b3 0.747 23.0 39.4 9.4 . .
OPT-2b7 0.637 »c 6 371 113 e MONITOR correlates inversely with
BLOOMZ-3b 0.686 30.6 44.8 16.8 accuracy

Vicuna-7b 0.504 38.2 59.7 18.4

BLOOMZ-7b1 0.632 36.2 49.3 22.9

Flan-T5-XXL 0.630 33.0 48.8 19.9

Vicuna-13b 0.484 44.8 65.5 27.0

WizardLM-13b 0.560 51.5 66.0 33.0

Flan-UL2 0.684 32.7 51.4 16.3

LLaMa-30b-ins. 0.479 50.8 71.2 30.5

Correlation Pearson

r(MONITOR,avg acc) -0.846 -0.846




Comparing MONITOR with Accuracy/Probability
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e Mean accuracy vs MONITOR; Probability of primary anchor vs MONITOR
e MONITOR shows inverse correlation with each measure



MONITOR and Accuracy Variance

Plot shows a single relation

Accuracy
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Does the Number of Paraphrased Prompts Matter?

B 4 prompts

N 7 prompts
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Comparison of MONITOR for P178 - 4 prompts vs 7 prompts



MONITOR and Scale

MONITOR
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Summary

e LLMs accuracy on factual knowledge can be affected by
o Prompt framing
o In-context interference

e Top-1 performance is insufficient

——> Accuracy is not Enough <{——

e We propose MONITOR. A metric which takes these into account
o Measures performance across prompts
o Considers probability margin

e MONITOR correlates with accuracy.
o But adds an extra dimension to the evaluation
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